
Single Component Systems
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First Order Transition

Gibbs Free Energy is the same for water and 
ice at 0°C.  Slope is different, DS.
There is an enthalpy of fusion DHf and an 
entropy change on melting DSf.  
These balance DG = DH –TDS = 0.  
Cp = (∂H/∂T)p There is a change in the slope 
of the H vs. T plot at the melting point.  Ice 
holds less heat than water.

DGf = 0 = DHf – TfDSf
Tf = DHf/DSf

Mott Transition
https://en.wikipedia.org/wiki/Mott_transition

https://en.wikipedia.org/wiki/Mott_transition
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Second Order Transition
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Clausius-Clapeyron Equation
(what is the dependence of vapor pressure on temperature?)

Consider two phases at equilibrium, a and b

dµa = dµb 
dG = Vdp –SdT
dµa = dµb 
So,
Vadp – SadT = Vbdp – SbdT
So,
dp/dT = DS/DV
and
DG = 0 = DH – TtransDS   so  DS = DH/Ttrans
and 
dp/dT = DH/(TtransDV)  Clapeyron Equation
For transition to a gas phase, DV ~ Vgas

and for low density gas (ideal) V = RT/p
d(lnpvap)/dT = DHvap/(RTvap

2)  Clausius-Clapeyron Equation

-S  U  V
 H       A
-p  G  T

This allows calculation of the vapor pressure as a function of T
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Clausius Clapeyron Equation

d(ln pSat)/dT = DHvap/(RTvap
2)  Clausius-Clapeyron Equation

d(ln pSat) = (-DHvap/R) d(1/T)

ln[pSat/ pC
Sat] = (-DHvap/R) [1/T – 1/TC]  Use the critical point as the reference state

Shortcut Vapor Pressure Calculation:

From the “Chemical Engineering Book” Elliot and Lira

../ChEThermoBeaucage/Elliot%20Lira%20Introductory_Chemical_Engineering_Thermo.pd
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Clausius Clapeyron Equation

d(ln pSat) = (-DHvap/R) d(1/T)

ln[pSat/ pR
Sat] = (-DHvap/R) [1/T – 1/TR]

This is a kind of Arrhenius Plot
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Clausius Clapeyron Equation
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This is a kind of 
Arrhenius Plot

d(ln pSat) = (-DHvap/R) d(1/T)

ln[pSat/ pR
Sat] = (-DHvap/R) [1/T – 1/TR]

Eyring Rate Theory
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Clapeyron Equation predicts linear T vs p for transition

dp/dT = DH/(TDV)  
Clapeyron Equation
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Clausius-Clapeyron Equation
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Consider absorption of a gas on a surface
First order transition from a vapor to an absorbed layer

Find the equilibrium pressure and 
temperature for a monolayer of 
absorbed hydrogen on a mesoporous 
carbon storage material

Use Clausius–Clapeyron Equation to determine the enthalpy of absorption

G = g H2 Absorbed per kg C

ln[pSat/ pR
Sat] = (-DHvap/R) [1/T – 1/TR] 
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Van’t Hoff Equation (Looks like Clausius Clapyron Equation)

For a chemical reaction the equilibrium constant Keq = product(xproducts)/product(xreactants)

DG = -RTlnKeq = DH – TDS 

lnKeq = -DH/RT + DS/R

d(lnKeq)/dT = +DHrxn/RT2 Van’t Hoff Equation
(Henry’s law constant is treated as an equilibrium reaction constant) 

For mixtures
Dilute:  Henry’s Law Partial Pressure, pi = Hij xi, Hij follows d(lnHij)/dT = DHij/RT2 
Ideal:    Raoult’s Law Partial Pressure, pi = psat xi

d(ln pSat)/dT = DHvap/(RTvap
2)  Clausius-Clapeyron Equation



12

Second Order Transition
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What About a Second Order Transition?
For Example: Glass Transition Tg versus P?

There is only one “phase” present.  A flowing phase and a “locked-in” phase for Tg.
There is no discontinuity in H, S, V

dV = 0 = (∂V/∂T)p dT + (∂V/∂p)T dp  = VadT – VkTdp

dp/dTg = Da/DkT

Tg should be linear in pressure.

a = (1/V) (∂V/∂T)p
kT = (1/V) (∂V/∂P)T
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dp/dTg = Da/DkT

Soft Matter, 2020, 16, 4625 

x is the dielectric relaxation time
Glass transition depends on the  
rate of observation, so you need 
to fix a rate of observation to 
determine the transition 
temperature.



15From L. H. Sperling, "Introduction to Physical Polymer Science, 2'nd Ed."

The glass transition occurs when the free 
volume reaches a fixed percent of the 
total volume according to the iso-free 
volume theory. This figure shows this 
value to be 11.3%.  The bottom dashes 
line is the occupied volume of molecules, 
which increases with temperature due to 
vibration of atoms.  The right solid line is 
the liquid line which decreases with 
decreasing temperature due to reduced 
translational and rotational motion (free 
volume) as well as molecular vibrations 
(occupied volume).  At about 10% the 
translational and rotational motion is 
locked out and the material becomes a 
glass.  The free volume associated with 
these motions is locked in at Tg.  



16From L. H. Sperling, "Introduction to Physical Polymer Science, 2'nd Ed."

https://www.frm2.tum.de/en/frm2/secondary-
sources/positron-source/

https://en.wikipedia.org/wiki/Electr
on–positron_annihilation

https://www.frm2.tum.de/en/frm2/secondary-sources/positron-source/
https://www.frm2.tum.de/en/frm2/secondary-sources/positron-source/
https://en.wikipedia.org/wiki/Electron%E2%80%93positron_annihilation
https://en.wikipedia.org/wiki/Electron%E2%80%93positron_annihilation
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Flory-Fox Equation

Fox Equation

Number of end-groups = 2/Mn

This indicates that the parameter of interest is 1/Tg
Tg is the temperature where a certain free volume is found due 
to thermal expansion, V = Voccupied + Vfree = V0 + VaTdT
Tg is the temperature where Vfree/V = 0.113

End groups have more free volume
Tg occurs when the free volume 
reaches less than Vfree ≤ 0.113V
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Some other second order transitions: 

Curie Temperature (permanent magnetism disappears Ferro to Para magnetic)
Neel Temperature (antiferromagnetic becomes paramagnetic)
Ferro to Para Magnetic (Curie Temp)
Ferri to Para Magnetic (Neel Temp)
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Usually Second order transition Neel Temperature (like Curie Temp for antiferromagnetic) Fe0.947O
Some cases First order transition (shown here for Fe0.99O)

Inden Model t = T/Ttr

For t <1

(∂H/∂T)p = Cp
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Landau theory for 2’nd order transitions based on a Taylor series 
expansion of the Gibbs free energy in the “Order Parameter” G

-The free energy is analytic (there is a function)
-The free energy is  symmetric in T (only even powers of T)

The order parameter was originally the magnetization, m
For liquid crystals it is the director
For binary blends it can be the composition

Curie Temperature is the critical point for ordering.  Above Tc no order and m = 0 
in the absence of a magnetic field, i.e. paramagnetism

Below Tc, m has a value.

At constant T and p

“a” is a bias associated with the direction of magnetization, this is 0 above Tc
“b” is positive above Tc and changes sign at Tc 

G

G0

G
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Landau theory for order parameter
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Landau theory for 2’nd order transitions

The order parameter G could be concentration (normal phase separation), magnetization (magnets) , orientation (LCs)
The point is to find a value for G above and below the critical point Tc (where phase separation become possible).
Particularly above Tc, G = 0 and we have no ”order” (think of no magnetization above the Curie temperature or no 
deviation from the average composition (r - < r >) above the critical temperature).

-The free energy is analytic (there is a function in G and T)
-The free energy F is symmetric in G (only even powers of G)

For simplicity, take a two term Taylor series expansion DF = a(T) G 2 + b(T)/2 G 4
Near the critical temperature assume for simplicity
  DF = a0 (T - Tc) G 2 + b0/2 G 4 

For a solution to G,  you must have b0 > 0 (this is obvious below); and a(T) must change sign for phase separation to 
occur at Tc so a(T) = a0 (T - Tc) 

At the critical point ∂F/∂G  = 0 = 2a0 (T - Tc) G0 + 2b0 G0
3 

To minimize free energy and make a stable phase either G0 = 0 (above Tc) or G0
2 = - a0 (T - Tc)/b0 (for T ≤ Tc)

For T ≤ Tc, G0 ~ (T - Tc)1/2 The critical exponent is ½ for Landau theory.

G

G0

G
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Landau theory for 2’nd order transitions

-S  U  V
 H       A
-p  G  T

dH = VdP + TdS
Cp = (∂H/∂T)P = T (∂S/∂T)P
G = DF = H – TS
(dDF/dT) = (dH/dT) – T(dS/dT) – S
(d2DF/dT2) = -(dS/dT) = -Cp/T 
Cp = -T (d2DF/dT2)
DF = a0 (T - Tc) G2 + b0/2 G4

G0 = 0 (above Tc) and G0
2 = - a0 (T - Tc)/b0 (for T ≤ Tc)

DF = 0 (above Tc) and DF = -a0
2 (T - Tc)2/b0 + a0

4/2 (T - Tc)2/b0 = -a0
2 (T - Tc)2/2b0

Cp = 0 (above Tc) ; and Cp = -T (d2DF/dT2) = T a0
2/b0 (for T ≤ Tc)

G

Discontinuity in the second derivative of 
free energy (Cp) at the transition temperature 
indicates a second order transition.

For a first order transition the jump at the 
transition temperature in CP would have 
been infinite, not DCP = Tc a0

2/b0 and G 
would not be continuous.
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One of two Landau approaches for 1’st order transitions

This approach looks very similar to the virial equation of state of Onnes
DF = A(T) G 2 – B0 G 4 + C0 G 6 
 First term negative above T0, second term negative, third term positive
 A(T) = A0 (T - T0); T0  is a temperature where A(T) changes sign (not Tc)
 A0, B0, C0 are positive and constant
i) T > T* (and T > T0 ), DF(G) increases for all G so minimum is at G0 = 0
ii) T < T* , DF(G) decreases in G from G =0 to a minimum at ± G 0(T) with DF < 0
iii) T0 <T< T*, DF(T) decreases then discontinuously drops to 0 at T*

To find T* 
1) DF = 0 
      0 = A(T) G 2 – B0 G 4 + C0 G 6  so, A(T) = B0 G 2 - C0 G 4
2)  dDF/dG  = 0 
      0 = 2A(T) G – 4B0 G 3 + 6C0 G 5 so, A(T) = 2B0 G 2 - 3C0 G 4
         or, B0 - C0 G 2 = 2B0 - 3C0 G 2  

     G 2(T*) = B0/2C0
3)  From 1) A(T) = B0 G 2 - C0 G 4
     And  A(T*) = B0 (B0/2C0) - C0 (B0/2C0)2 = B0

2/4C0
    A(T*) = A0 (T* - T0) so, T* = T0 + B0

2/(4 A0 C0)

Landau invented the terms first and second order transition from this model.

1’st Order Transition shows 
a discontinuity in G0(T)

2’nd Order 
Transition 
doesn’t

G0(T)

T0

G0(T)
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At the Curie transition (second order transition)

Order parameter is 1 at 0 K so and

G



28



29

Single Component Phase Diagrams

For a single component, an equation of state relates the variables of the system, PVT
PV = RT or Z = 1 Ideal Gas at low p or high T or low r

Virial Equation of State

So, a phase diagram for a single component will involve two free variables, such as P vs T or T versus r.

Other unusual variables might also be involved such as magnetic field, electric field.  
Then a 2D phase diagram would require specification of the fixed free variables.

Z is the Compressibility Factor

B is the second order virial coefficient which reflects binary interactions, r2

B has units of volume and is related to the excluded volume (will see later with VDW EOS)
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Single Component Phase Diagrams

For a single component, an equation of state relates the variables of the system, PVT

Isochoric phase diagram

Fill a piston with the 
material at p and T, and 
observe the pressure as 
the temperature is 
varied holding the 
volume constant
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http://ecoursesonline.iasri.res.in/mod/page/view.php?id=2406

Isothermal Isochoric
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Gibbs Phase Rule

Number of DOF = Components – Phases + 2
More components more freedom
More phases more constraints
F = 2 area; F = 1 line; F = 0 point on a 2d phase diagram
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Field Induced Transitions
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Consider constant volume (isochoric) and subject to a magnetic field

-S U V
 H    A
-p G T

dU = -pdV + TdS + Bdm = TdS + Bdm
dA = -SdT – pdV +Bdm = -SdT + Bdm

dA = -SdT + Bdm
So, A is naturally broken into functions of T and m
(dA/dT)m = -S
(dA/dm)T = B
dA = (dA/dT)m dT + (dA/dm)T dm

Take the second derivative
d2A/(dTdm) =((d/dT)(dA/dm)T)m = ((d/dm)(dA/dT) m) T = d2A/(dmdT)
Using the above expressions and the middle two terms
 (dB/dT)m,V = -(dS/dm)T,V
This is a Maxwell Relationship, and the process is called a Legendre transformation

Legendre Transformation (isochoric dV = 0)

Magnetic Field Strength B (intrinsic)
Magnetic Moment, m (extrinsic)
 (strength of a magnet)
Magnetic moment drops with T
Torque = m x B

Assume constant volume, V
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Consider constant volume (isochoric) and subject to a magnetic field

-S U V
 H    A
-p G T

dU = -pdV + TdS + Bdm = TdS + Bdm
dA = -SdT – pdV +Bdm = -SdT + Bdm

Legendre Transformation

Magnetic Field Strength B
Magnetic Moment, m
 (strength of a magnet)
Magnetic moment drops with T
Torque = m x B

Assume constant volume, V

We want to know how the magnetic moment, m, changes with temperature at constant 
volume and field strength, B, (dm/dT)B,V.  Intuitively, we know that this decreases.  

Define a Helmholtz free energy (HFE) minus the magnetic field energy, A’,
A’ = A – Bm and set its derivative to 0.  This is the complete HFE for a magnetic field, (see 
the Alberty paper section 4, probably need to read the whole paper or just believe it)
dA’ = 0 = dA – Bdm – mdB = -SdT + Bdm –Bdm –mdB = -SdT –mdB = 0
We can perform a Legendre Transform on this equation yielding:
(dm/dT)B,V = (dS/dB)T,V
So, the change in magnetic moment with temperature (which decreases) is equal to the 
reduction in entropy with magnetic field (as the material orders).
With this extension the four Maxwell relations expand to 27 with the normal parameters 
and a very large number if you include the different fields in slide 16
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Magnetic field strength decreases with temperature

The Curie temperature is where magnets lose their 
permanent magnetic field

(dm/dT)B,V = (dS/dB)T,V

The rate of change of magnetic moment in temperature at 
constant field reflects the isothermal change in entropy 
with magnetic field.  At the Curie Temperature entropy 
doesn’t change with field at constant temperature.

Ising Model
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Gibbs Phase Rule with n additional components

Degrees of freedom, F plus number of phases Ph, equals the 
number of components, C ,plus 2 plus the number of 
additional components considered, n.
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Equations of State for Gasses

Ideal Gas:     pV = RT    p = rRt     Z = 1

P ~ 1/V
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-S U V
 H    A
-p G T dG = -SdT + VdP

At constant T
(dG = Vdp)T

For an ideal gas V = RT/p

DG = RTln(pf/pi)    Ideal Gas at constant T, no Enthalpic Interactions

For single component molar G = µ
µ0 is at p = 1 bar
µ = µ0 + RT ln p

Chemical Potential of an Ideal Gas
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µ = µ0 + RT ln p    i.g.

At equilibrium between two phases the chemical 
potentials are equal and the fugacities of the two 
phases are also equal.

Real Gas
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P= RT/V

Cubic Equation of State

Cubic Equation of State

Solve cubic equations (3 roots)

Ideal Gas Equation of State

Van der Waals Equation of State

Virial Equation of State of Onnes

Peng-Robinson Equation of State (PREOS)

Z = 1

Law of corresponding states
P = RTr/(1-br) – a r2
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Single Component Phase Diagrams

For a single component, an equation of state relates the variables of the system, PVT

Isochoric phase diagram
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Compound Tc(K) Pc(MPa)

METHANE 190.6 4.604 rc = 0.0104 mol/cm3 
Gas Tc (K) Pc (MPa)
ISOPENTANE 460.4 3.381 rc = 0.00287 mol/cm3 

At 0.8 * 460.4K = 368K
And 0.64 MPa 2 phases
Higher pressure liquid
Lower vapor
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F(Z)=

45
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CALculation of PHAse Diagrams, CALPHAD

For metal alloys to construct phase diagrams
Calculate the Gibbs Free Energy 
 Use a Taylor Series in Temperature
Determine the phase equilibria using the chemical potentials
 Calculate the derivatives of the free energy expression

Get Hm
SER from Hm

0 for the components

-S  U  V
 H       A
-p  G  T
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