## Single Component Systems

## First Order Transition

Gibbs Free Energy is the same for water and ice at $0^{\circ} \mathrm{C}$. Slope is different, $\Delta \mathrm{S}$.
There is an enthalpy of fusion $\Delta \mathrm{H}_{\mathrm{f}}$ and an entropy change on melting $\Delta \mathrm{S}_{\mathrm{f}}$. These balance $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=0$. $\mathrm{C}_{\mathrm{p}}=(\partial \mathrm{H} / \partial \mathrm{T})_{\mathrm{p}}$ There is a change in the slope of the H vs. T plot at the melting point. Ice holds less heat than water.

$$
\begin{aligned}
& \Delta \mathrm{G}_{\mathrm{f}}=0=\Delta \mathrm{H}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}} \Delta \mathrm{~S}_{\mathrm{f}} \\
& \mathrm{~T}_{\mathrm{f}}=\Delta \mathrm{H}_{\mathrm{f}} \Delta \Delta \mathrm{~S}_{\mathrm{f}}
\end{aligned}
$$



Figure 2.1 The temperature variation of the heat capacity, enthalpy, entropy, and Gibbs energy close to the first-order semiconductor to metal transition in NiS [1].

## Mott Transition

https://en.wikipedia.org/wiki/Mott transition


Figure 2.2 Crystal structure of $\alpha$ - (low) and $\beta$ - (high) quartz $\left(\mathrm{SiO}_{2}\right)$.


Figure 2.3 The temperature variation of the Gibbs energy [5], unit-cell volume [4] enthalpy and heat capacity [5] at the second-order $\alpha$ - to $\beta$-quartz transition of $\mathrm{SiO}_{2}$. Second-order derivatives of the Gibbs energy like the heat capacity have discontinuities at

## Clausius-Clapeyron Equation <br> (what is the dependence of vapor pressure on temperature?)

Consider two phases at equilibrium, $\alpha$ and $\beta$

| $-S$ | $U$ | $V$ |
| :---: | :---: | :---: |
| $H$ | $A$ |  |
| $-p$ | $G$ | $T$ |

$$
\begin{aligned}
& d G=V d p-S d T \\
& d \mu_{\alpha}=d \mu_{\beta} \\
& S o, \\
& V^{\alpha} d p-S^{\alpha} d T=V^{\beta} d p-S^{\beta} d T \\
& S o, \\
& d p / d T=\Delta S / \Delta V \\
& \text { and } \\
& \Delta G=0=\Delta H-T_{\text {trans }} \Delta S \text { so } \Delta S=\Delta H / T_{\text {trans }} \\
& \text { and } \\
& d p / d T=\Delta H /\left(T_{\text {trans }} \Delta V\right) \text { Clapeyron Equation } \\
& \text { For transition to a gas phase }, \Delta V \sim \text { vgas } \\
& \text { and for low density gas (ideal) } V=R T / \text { p } \\
& d\left(\ln p_{\text {vap }}\right) / d T=\Delta H_{\text {vap }} /\left(\text { RT }_{\text {vap }}{ }^{2}\right) \text { Clausius-Clapeyron Equation }
\end{aligned}
$$

This allows calculation of the vapor pressure as a function of $T$

## Clausius Clapeyron Equation

$\mathbf{d}\left(\ln \mathbf{p}^{\text {sat }}\right) / \mathbf{d T}=\Delta \mathbf{H}_{\text {vap }} /\left(\mathbf{R T}_{\text {vap }}{ }^{2}\right)$ Clausius-Clapeyron Equation
$d\left(\ln p^{\text {Sat }}\right)=\left(-\Delta H_{\text {vap }} / R\right) d(1 / T)$
$\ln \left[p^{\text {Sat }} / p_{C}{ }^{\text {Sat }}\right]=\left(-\Delta H_{\text {vap }} / R\right)\left[1 / T-1 / T_{C}\right]$ Use the critical point as the reference state
Shortcut Vapor Pressure Calculation:

$$
\log _{10} P_{r}^{s a t}=\frac{7}{3}(1+\omega)\left(1-\frac{1}{T_{r}}\right)
$$



Figure 1.4 P-V-T behavior of water at the same temperatures used in Fig. 1.3. The plot is prepared from the steam tables in Appendix $E$.

From the "Chemical Engineering Book" Elliot and Lira

Clausius Clapeyron Equation
$d\left(\ln p^{\text {sat }}\right)=\left(-\Delta H_{\text {vap }} / R\right) d(1 / T)$
$\ln \left[p^{\text {Sat }} / p_{R}^{\text {Sat }}\right]=\left(-\Delta H_{\text {vap }} / R\right)\left[1 / T-1 / T_{R}\right]$

$$
\ln \left[p^{\mathrm{Sat}} / p_{R}{ }^{\text {Sat }}\right]=\left(-\Delta H_{\text {vap }} / R\right)\left[1 / T-1 / T_{R}\right]
$$

$$
\log _{10} P_{r}^{\text {sat }}=\frac{7}{3}(1+\omega)\left(1-\frac{1}{T_{r}}\right)
$$

This is a kind of Arrhenius Plot



Figure 9.1. Plot to evaluate Clausius-Clapeyron for calculation of vapor pressures at high pressures, argon (left) and ethane (right).

## Clausius Clapeyron Equation



Figure 9.1. Plot to evaluate Clausius-Clapeyron for calculation of vapor pressures at high pressures, argon (left) and ethane (right).
 demonstrating the qualitative similarity which led to corresponding states' treatment of fluids.

The lines are calculated with the Peng-Robinson equation to be discussed later. The phase envelope is an approximation sketched through the points available in the plots. The smoothed experimental data are from Brown, G.G., Sounders Jr., M., and Smith, R.L., 1932. Ind. Eng. Chem., 24:513. Although not shown, the Peng-Robinson equation is not particularly accurate for
$\mu=A e^{B / T}$
This is a kind of Arrhenius Plot

$$
V(t)=V_{0} e^{-\frac{t}{R C}},
$$

The constant $\tau=R C$

$k=A e^{\frac{-E_{\mathrm{a}}}{R T}}$


$$
d\left(\ln p^{\text {Sat }}\right)=\left(-\Delta H_{\text {vap }} / R\right) d(1 / T)
$$

$$
\ln \left[p^{5 a t} / p_{R}^{\text {Sat }}\right]=\left(-\Delta H_{\text {vap }} / R\right)\left[1 / T-1 / T_{R}\right]
$$




Figure 9.1. Plot to evaluate Clausius-Clapeyron for calculation of vapor pressures at high pressures, argon (left) and ethane (right).

## Clapeyron Equation predicts linear $\mathbf{T}$ vs $\mathbf{p}$ for transition

$\mathrm{dp} / \mathrm{dT}=\Delta \mathrm{H} /(\mathrm{T} \Delta \mathrm{V})$
Clapeyron Equation


Figure 2.4 The initial $\mathrm{d} T / \mathrm{d} p$ slope of selected first-order phase transitions relative to the transition temperature at $p=1$ bar. Data taken from $[6,7]$.

## Clausius-Clapeyron Equation



Figure 2.5 The vapour pressure of pure Zn as a function of temperature. The standard boiling (or vaporization) temperature is defined by the temperature at which the pressure of Zn is 1 bar.

## Consider absorption of a gas on a surface <br> First order transition from a vapor to an absorbed layer

Determination of the enthalpy of adsorption of hydrogen in activated carbon at room temperature
E.W. Knight**, A.K. Gillespie, M.J. Prosniewski, D. Stalla, E. Dohnke, T.A. Rash, P. Pfeifer, C. Wexler

Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
INTERNATIONAL JOURNAL OFHYDROGEN ENERGY 45 (2020) I554I-I 5552

Find the equilibrium pressure and temperature for a monolayer of absorbed hydrogen on a mesoporous carbon storage material

$$
\ln \left[p^{\text {sat }} / p_{R}^{\text {sat }}\right]=\left(-\Delta H_{\text {vap }} / R\right)\left[1 / T-1 / T_{R}\right]
$$

$$
\Delta H=\frac{R T_{1} T_{2}}{T_{2}-T_{1}} \ln \frac{P_{2}}{P_{1}}
$$

Use Clausius-Clapeyron Equation to determine the enthalpy of absorption

$\mathbf{G}=\mathbf{g} \mathbf{H}_{2}$ Absorbed per kg C $G_{\text {abs }}\left[\mathrm{g} \mathrm{H}_{2} / \mathrm{kg} \mathrm{C}\right]$
$G_{\text {mos }}\left[g \mathrm{H}_{2} / \mathrm{kg} \mathrm{C]}\right.$
Fig. 11 - (a) Enthalpy of adsorption calculated of BR-0311 using 77 and 87 K isotherms (Eq. (3)). (b) Enthalpy of adsorption using three different film volumes at room temperature ( 273 and 293 K ): (i) the calculated film volumes from the Ono-Kondo fits (red), (ii) the film volume equal to zero $G_{a b s}=G_{e x}$ (isoexcess) (black), and (iii) the film volume equal to the pore volume $\mathrm{G}_{\text {abs }}=\mathrm{G}_{\text {st }}$ (isostorage, see Appendix A) (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

## Van't Hoff Equation (Looks like Clausius Clapyron Equation)

For a chemical reaction the equilibrium constant $\operatorname{Keq}=\operatorname{product}\left(\mathrm{x}_{\text {products }}\right) / \operatorname{product}\left(\mathrm{x}_{\text {reactants }}\right)$
$\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{eq}}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\ln \mathrm{K}_{\mathrm{eq}}=-\Delta \mathrm{H} / \mathrm{RT}+\Delta \mathrm{S} / \mathrm{R}$
$\mathrm{d}\left(\ln \mathrm{K}_{\mathrm{eq}}\right) / \mathrm{dT}=+\Delta \mathrm{H}_{\mathrm{rxn}} / \mathrm{RT}^{2}$ Van't Hoff Equation
(Henry's law constant is treated as an equilibrium reaction constant)

## For mixtures

Dilute: Henry's Law Partial Pressure, $\mathbf{p}_{\mathbf{i}}=\mathbf{H}_{\mathbf{i j}} \mathbf{x}_{\mathbf{i}}, \mathbf{H}_{\mathbf{i j}}$ follows $\mathrm{d}\left(\ln \mathrm{H}_{\mathrm{ij}}\right) / \mathrm{dT}=\Delta \mathrm{H}_{\mathrm{ij}} / \mathrm{RT}^{2}$ Ideal: Raoult's Law Partial Pressure, $p_{i}=p_{\text {sat }} \mathbf{x}_{i}$

$$
\mathrm{d}\left(\ln \mathrm{p}^{\text {Sat }}\right) / \mathrm{dT}=\Delta \mathrm{H}_{\text {vap }} /\left(\mathrm{R} \mathrm{~T}_{\text {vap }}^{2}\right) \text { Clausius-Clapeyron Equation }
$$



Figure 2.2 Crystal structure of $\alpha$ - (low) and $\beta$ - (high) quartz $\left(\mathrm{SiO}_{2}\right)$.


Figure 2.3 The temperature variation of the Gibbs energy [5], unit-cell volume [4] enthalpy and heat capacity [5] at the second-order $\alpha$ - to $\beta$-quartz transition of $\mathrm{SiO}_{2}$. Second-order derivatives of the Gibbs energy like the heat capacity have discontinuities at
$\alpha=(1 / \mathrm{V})(\mathrm{\partial V} / \partial \mathrm{T})_{\mathrm{p}}$
$\kappa_{T}=(1 / V)(\partial V / \partial P)_{T}$

## What About a Second Order Transition?

For Example: Glass Transition $\mathrm{T}_{\mathrm{g}}$ versus P?

There is only one "phase" present. A flowing phase and a "locked-in" phase for $\mathrm{T}_{\mathrm{g}}$. There is no discontinuity in $\mathrm{H}, \mathrm{S}, \mathrm{V}$
$\mathrm{dV}=0=(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT}+(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}} \mathrm{dp}=\mathrm{V} \alpha \mathrm{dT}-\mathrm{V} \kappa_{\mathrm{T}} \mathrm{dp}$
$\mathrm{dp} / \mathrm{dT}_{\mathrm{g}}=\Delta \alpha / \Delta \kappa_{\mathrm{T}}$
$\mathrm{T}_{\mathrm{g}}$ should be linear in pressure.

## On the pressure dependence of the

 thermodynamical scaling exponent $\gamma$R. Casalini (Da and T. C. Ransom (D) $\dagger^{\text {ab }}$
${ }^{a}$ Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA. E-mail: riccardo.casalini@nrLnavy.mil
${ }^{b}$ American Society for Engineering Education, Washington, D.C. 20036-2479, USA
$\dagger$ Current address: Naval Surface Warfare Center, Indian Head Explosive Ordnance Disposal Technology Division, Indian Head, MD 20640, USA.

Soft Matter, 2020, 16, 4625
x is the dielectric relaxation time Glass transition depends on the rate of observation, so you need to fix a rate of observation to determine the transition temperature.
liquids: o-terphenyl (OTP), $\gamma_{\mathrm{s}}=5.3,{ }^{33,34} 1,1^{\prime}$-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC), $\gamma_{\mathrm{s}}=8.5,{ }^{35,36}$ phenyl-phthalein-dimethylether (PDE), $\gamma_{\mathrm{S}}=4.5,{ }^{37,38}$ and three polychlorinated byphenyls (PCB42, PCB54 and PCB62), found to have very different values of $\gamma_{\mathrm{S}}$ (PCB42 $\gamma_{\mathrm{S}}=5.5$, PCB54 $\gamma_{\mathrm{s}}=6.7$ and PCB62 $\gamma_{\mathrm{S}}=8.5$ ). ${ }^{39}$ In particular, between these materials
$\mathrm{dp} / \mathrm{dT}_{\mathrm{g}}=\Delta \alpha / \Delta \kappa_{\mathrm{T}}$


Fig. 1 Temperature $T_{X}$ versus pressure $P_{X}$ at constant relaxation time for six nonassociated liquids. The points are experimental data and the line are the best fit to the AA equation (eqn (8)). The best-fit parameters are reported in Table 1.


The glass transition occurs when the free volume reaches a fixed percent of the total volume according to the iso-free volume theory. This figure shows this value to be $11.3 \%$. The bottom dashes line is the occupied volume of molecules, which increases with temperature due to vibration of atoms. The right solid line is the liquid line which decreases with decreasing temperature due to reduced translational and rotational motion (free volume) as well as molecular vibrations (occupied volume). At about $10 \%$ the translational and rotational motion is locked out and the material becomes a glass. The free volume associated with these motions is locked in at $\mathrm{T}_{\mathrm{g}}$.

Temperature
Figure 8.22 A schematic diagram illustrating free volume as calculated by Simha and Boyer.

From L. H. Sperling, "Introduction to Physical Polymer Science, 2'nd Ed."


## Research Neutron Source Heinz Maier-Leibnitz (FRM II)

Research Neutron Source
Centrar Scientifif Institions
Technical University of Munich

Home Home $>$ The Neutron Source $\geqslant$ Secondary sources for neutrons and positrons $>$ Positron source
About us
The Neutron Source

## Positron source

Electron-positron annihilation
From Wikipedia, the free encyclopedia
Electron-positron annihilation occurs when an electron ( $\mathrm{e}^{-}$) and a positron ( $\mathrm{e}^{+}$, the electron's antiparticle) collide. At low energies, the result of the collision is the annihilation of the electron and positron, and the creation of energetic photons:
$\mathrm{e}^{-}+\mathrm{e}^{+} \rightarrow \mathrm{y}+\mathrm{y}$
At high energies, other particles, such as $B$ mesons or the $W$ and $Z$ bosons, can be created. All processes must satisfy a number of conservation laws, including:

- Conservation of electric charge. The net charge before and after is zero.
- Conservation of linear momentum and total energy. This forbids the creation of a single photon. However, in quantum field theory this process is allowed; see examples of annihilation.
- Conservation of total (i.e. net) lepton number, which is the number of leptons (such as the electron) minus the number of antileptons Conservation of total (i.e. net) lepton number, which is the number of leptons (such
(such as the positron); this can be described as a conservation of (net) matter law.

As with any two charged objects, electrons and positrons may also interact with each other without annihilating, in general by elastic scattering.
 Temperat

Figure 8.22 A schematic diagram illustrating free Boyer.

Neutrons
I itn oume of a fuel


Water permit
Discharge of C-14

Entsorgung der Brennelemente Research Industry \& Medicine

The Forschungs-Neutronenquelle Heinz Maier-Leibnitz FRM II houses the world's most powerful positron source. It produces a billion positrons per second, which is up to 1000 times more than comparable facilities.


Four different instruments
$+\quad$ Four different instruments use positrons at the FRM II: The Surface Spectrometer SuSpect, the Coincidence Doppler-Broadening Spectrometer (CDBS) [ँ, the Pulsed Low-Energy Positron System (PLEBS) ए and the Positron Time of Flight Experiment, which is directly connected to the beam line.

## Applications

Apart from basic research, positrons at the instrument NEPOMUC are used in particular for materials research, as they are not only able to detect defects in the atomic structure, but also differentiate between different kinds of atoms. Depending on the element, the positron electron annihilation leads to a different gamma spectrum. The FRM III, one layer of zinc atoms was identified from buried below 500 layers of aluminum.

Even missing atoms in the lattice can be detected using positrons. These voids can eventually lead to cracks when the material is mechanically stressed. Positrons are able to detect one missing atom in ten million.
More information on NEPOMUC can be found on the webpage of the Heinz Maier-Leibnitz Zentrum [

From L. H. Sperling, "Introduction to Physical Polymer Science, 2'nd Ed."

Flory-Fox Equation
$T_{g}=T_{g, \infty}-\frac{K}{M_{n}}$


End groups have more free volume $\mathrm{T}_{\mathrm{g}}$ occurs when the free volume reaches less than $\mathrm{V}_{\text {free }} \leq 0.113 \mathrm{~V}$

## Fox Equation

$$
\frac{1}{T_{g}}=\frac{w_{1}}{T_{g, 1}}+\frac{w_{2}}{T_{g, 2}}
$$

This indicates that the parameter of interest is $1 / \mathrm{T}_{\mathrm{g}}$ $T_{g}$ is the temperature where a certain free volume is found due to thermal expansion, $V=V_{\text {occupied }}+V_{\text {free }}=V_{0}+V \alpha_{T} d T$ $T_{g}$ is the temperature where $V_{\text {free }} / V=0.113$

Some other second order transitions:


Curie Temperature (permanent magnetism disappears Ferro to Para magnetic) Neel Temperature (antiferromagnetic becomes paramagnetic)
Ferro to Para Magnetic (Curie Temp)
Ferri to Para Magnetic (Neel Temp)

Orientations of magnetic moments in materials


Ferromagnetism: The magnetic moments in a ferromagnetic material are ordered and of the same magnitude in the absence of an applied magnetic field.


Applied Magnetic
Field Present

Paramagnetism: The magnetic moments in a paramagnetic material are disordered in the absence of an applied magnetic field and ordered in the presence of an applied
magnetic field.


Ferrimagnetism: The magnetic moments in a ferrimagnetic material have different magnitudes (due to the crystal containing two different types of magnetic ions ${ }^{\text {[clarification needed] }}$ which are aligned oppositely in


Antiferromagnetism: The magnetic moments in an antiferromagnetic material have the same magnitudes but are aligned oppositely in the absence of an applied magnetic field.
the absence of an applied
magnetic field.

Usually Second order transition Neel Temperature (like Curie Temp for antiferromagnetic) $\mathrm{Fe}_{\mathbf{0 . 9 4 7}} \mathbf{O}$ Some cases First order transition (shown here for $\mathrm{Fe}_{0.99} \mathrm{O}$ )

Inden Model $\tau=\mathrm{T} / \mathrm{T}_{\mathrm{tr}}$
For $\tau<1$

$$
C_{p}^{\mathrm{mag}}=K^{\mathrm{L}} R \frac{\ln \left(1+\tau^{3}\right)}{\ln \left(1-\tau^{3}\right)}
$$

For $\tau>1$

$$
C_{p}^{\mathrm{mag}}=K^{\mathrm{S}} R \frac{\ln \left(1+\tau^{5}\right)}{\ln \left(1-\tau^{5}\right)}
$$

Figure 2.13 Heat capacity of wüstite around the Néel temperature [19]. O: $\mathrm{Fe}_{0.99} \mathrm{O}$; • $\mathrm{Fe}_{0.947} \mathrm{O} ; \nabla: \mathrm{Fe}_{0.938} \mathrm{O} ;+: \mathrm{Fe}_{0.925} \mathrm{O}$. Reproduced by permission of the Mineralogical Society of America.
[19] S. Stølen, R. Glöckner, F. Grønvold, T. Atake and S. Izumisawa, Am. Mineral. 1996, 81, 973.

First-order antiferromagnetic transitions of $\mathrm{SrMn}_{2} \mathrm{P}_{2}$
and $\mathrm{CaMn}_{2} \mathrm{P}_{2}$ single crystals containing
corrugated-honeycomb Mn sublattices


and David C. Johnston ${ }^{\text {a,b,2, }} \oplus$

Materials Crystallography, Department of Chemistry, Aarhus University, DK-8000 Aarthus C, Denmark; iNANO, Aarhus U U
Denmark; and Department of Materials and Environmental Chemistr, Stockholm Univerity, 10691 Stockhoim, Sweden


Fig. 5. Heat capacity $C_{\mathrm{p}}$ versus temperature $T$ for (A) $\mathrm{SrMn}_{2} \mathrm{P}_{2}$ and ( $B$ ) CaMn $\mathrm{C}_{2} \mathrm{P}_{2}$ single crystals. (A and $B$, Insets) $C_{\mathrm{p}}(T) / T$ versus $T^{2}$ for $T \leq 5 \mathrm{~K}$, where the straight lines through the respective data are fits by Eq. 1. A comparison of the conventionally measured $C_{p}(T)$ and single-pulse slope-analyzed $C_{p}(T)$ (using a heating curve) is shown for (C) $\mathrm{SrMn}_{2} \mathrm{P}_{2}$ and ( $D$ ) $\mathrm{CaMn} \mathrm{A}_{2} \mathrm{P}_{2}$ crystals. ( $C$ and $D$, Insets) The latent heat associated with the first-order magnetic transition (FOMT). The $C_{p}(T)$ values at the FOMT are estimated by subtracting the polynomial-fitted baseline data (dashed green line) from the total $C_{p}(T)$ data in that temperature region shown in $C$ and $D$.

## \#世!

Figure 1. Below the Curie temperature, neighbouring magnetic spins align parallel to each other in ferromagnet in the absence of an applied magnetic field


Figure 2. Above the Curie temperature, the magnetic spins are randomly aligned in a paramagnet unless a magnetic field is applied

Landau theory for 2'nd order transitions based on a Taylor series expansion of the Gibbs free energy in the "Order Parameter" $\Gamma$
-The free energy is analytic (there is a function)
-The free energy is symmetric in T (only even powers of T)

The order parameter was originally the magnetization, $m$
For liquid crystals it is the director
For binary blends it can be the composition

Curie Temperature is the critical point for ordering. Above $T_{c}$ no order and $m=0$ in the absence of a magnetic field, i.e. paramagnetism

Below $\mathrm{T}_{\mathrm{c}}$, m has a value.

$$
\Delta_{\mathrm{trs}} G=\Delta_{\mathrm{trs}} G(T, p, \Gamma)
$$

At constant T and p

$$
\Delta_{\mathrm{trs}} G=a \Gamma+\frac{1}{2} b \Gamma^{2}+\frac{1}{3} c \Gamma^{3}+\frac{1}{4} d \Gamma^{4}+\ldots
$$

" $a$ " is a bias associated with the direction of magnetization, this is 0 above $T_{c}$
" b " is positive above $\mathrm{T}_{\mathrm{c}}$ and changes sign at $\mathrm{T}_{\mathrm{c}} \quad b=B\left(T-T_{\mathrm{trs}}\right)$

## Landau theory for order parameter

Lev Landau


Landau in 1962
Born

Died
Lev Davidovich Landau 22 January 1908
Baku, Baku Governorate, Russian Empire
1 April 1968 (aged 60)
Moscow, Russian SFSR, Soviet Union


Photo in prison, 1938-9

On 27 April 1938, Landau was arrested for a leaflet which compared Stalinism to German Nazism and Italian Fascism. ${ }^{[17][23]}$ He was held in the NKVD's Lubyanka prison until his release, on 29 April 1939, after Pyotr Kapitsa, an experimental low-temperature physicist and the founder and head of the institute, wrote a letter to Joseph Stalin in which he personally vouched for Landau's behaviour and

Landau led a team of mathematicians supporting Soviet atomic and hydrogen bomb development. He calculated the dynamics of the first Soviet thermonuclear bomb, including predicting the yield. For this work Landau received the Stalin Prize in 1949 and 1953, and was awarded the title "Hero of Socialist Labour" in 1954. ${ }^{[17]}$

Throughout his life Landau was known for his sharp humour, as illustrated by the following dialogue with a psychologist, Alexander Luria, who tried to test for possible brain damage while Landau was recovering from the car crash: ${ }^{[12][32]}$

Luria: "Please draw me a circle" Landau received the 1962 Nobel Prize in Physics for his development of a mathematical theory of Landau draws a cross superfluidity that accounts for the properties of liquid helium II at a temperature below 2.17 K

Luria: "Hm, now draw me a cross"
Landau draws a circle
Luria: "Landau, why don't you do what I ask?"
Landau: "If I did, you might come to think I've become mentally retarded".

## Landau theory for 2'nd order transitions

The order parameter $\Gamma$ could be concentration (normal phase separation), magnetization (magnets), orientation (LCs) The point is to find a value for $\Gamma$ above and below the critical point $T_{\mathrm{c}}$ (where phase separation become possible). Particularly above $T_{\mathrm{c}}, \Gamma=0$ and we have no "order" (think of no magnetization above the Curie temperature or no deviation from the average composition ( $\rho-\langle\rho\rangle$ ) above the critical temperature).
-The free energy is analytic (there is a function in $\Gamma$ and $T$ )
-The free energy $F$ is symmetric in $\Gamma$ (only even powers of $\Gamma$ )
For simplicity, take a two term Taylor series expansion $\Delta F=a(T) \Gamma^{2}+b(T) / 2 \Gamma^{4}$
Near the critical temperature assume for simplicity


For a solution to $\Gamma$, you must have $b_{0}>0$ (this is obvious below); and $a(T)$ must change sign for phase separation to occur at $T_{\mathrm{c}}$ so $a(T)=a_{0}\left(T-T_{\mathrm{c}}\right)$

At the critical point $\partial \mathrm{F} / \partial \Gamma=0=2 a_{0}\left(T-T_{\mathrm{c}}\right) \Gamma_{0}+2 b_{0} \Gamma_{0}{ }^{3}$
To minimize free energy and make a stable phase either $\Gamma_{0}=0$ (above $T_{\mathrm{c}}$ ) or $\Gamma_{0}{ }^{2}=-a_{0}\left(T-T_{\mathrm{c}}\right) / b_{0}$ (for $T \leq T_{\mathrm{c}}$ ) For $T \leq T_{\mathrm{c}}, \Gamma_{0} \sim\left(T-T_{\mathrm{c}}\right)^{1 / 2}$ The critical exponent is $1 / 2$ for Landau theory.

## Landau theory for 2'nd order transitions

$$
\begin{array}{ll}
\mathrm{d} H=V \mathrm{~d} P+T \mathrm{~d} S & \text { H } \\
C_{\mathrm{p}}=(\partial H / \partial T)_{P}=T(\partial S / \partial T)_{P} & \text { A } \\
G=\Delta F=H-T S & \text { p G T } \\
(\mathrm{d} \Delta F / \mathrm{d} T)=(\mathrm{d} H / \mathrm{d} T)-T(\mathrm{~d} S / \mathrm{d} T)-S & \\
\left(\mathrm{~d}^{2} \Delta F / \mathrm{d} T^{2}\right)=-(\mathrm{d} S / \mathrm{d} T)=-C_{\mathrm{p}} / \mathrm{T} & \\
C_{\mathrm{p}}=-\mathrm{T}\left(\mathrm{~d}^{2} \Delta F / \mathrm{d} T^{2}\right) & \\
\Delta F=a_{0}\left(T-T_{\mathrm{c}}\right) \Gamma^{2}+b_{0} / 2 \Gamma^{4} & \Gamma_{0}=0\left(\text { above } T_{\mathrm{c}}\right) \text { and } \Gamma_{0}^{2}=-a_{0}\left(T-T_{\mathrm{c}}\right) / b_{0}\left(\text { for } T \leq T_{\mathrm{c}}\right) \\
\Delta F=0\left(\text { above } T_{\mathrm{c}}\right) \text { and } \Delta F=-a_{0}^{2}\left(T-T_{\mathrm{c}}\right)^{2} / b_{0}+a_{0}{ }^{4} / 2\left(T-T_{\mathrm{c}}\right)^{2} / b_{0}=-a_{0}^{2}\left(T-T_{\mathrm{c}}\right)^{2} / 2 b_{0} \\
C_{\mathrm{p}}=0\left(\text { above } T_{\mathrm{c}}\right) ; \text { and } C_{\mathrm{p}}=-\mathrm{T}\left(\mathrm{~d}^{2} \Delta F / \mathrm{d} T^{2}\right)=\mathrm{T} a_{0}^{2} / b_{0}\left(\text { for } T \leq T_{\mathrm{c}}\right)
\end{array}
$$



Order parameter and specific heat as a function of temperature

Discontinuity in the second derivative of free energy $\left(C_{\mathrm{p}}\right)$ at the transition temperature indicates a second order transition.

For a first order transition the jump at the transition temperature in $C_{P}$ would have been infinite, not $\Delta C_{P}=T_{\mathrm{c}} a_{0}{ }^{2} / b_{0}$ and $\Gamma$ would not be continuous.

## One of two Landau approaches for 1'st order transitions

This approach looks very similar to the virial equation of state of Onnes $\Delta F=A(T) \Gamma^{2}-B_{0} \Gamma^{4}+C_{0} \Gamma^{6}$

First term negative above $\mathrm{T}_{0}$, second term negative, third term positive $A(T)=A_{0}\left(T-T_{0}\right) ; T_{0}$ is a temperature where $\mathrm{A}(\mathrm{T})$ changes sign $\left(\operatorname{not} T_{\mathrm{c}}\right)$

1'st Order Transition shows a discontinuity in $\Gamma_{d}(\mathrm{~T})$
$A_{0}, B_{0}, C_{0}$ are positive and constant
i) $\quad T>T^{*}\left(\right.$ and $\left.T>T_{0}\right), \Delta F(\Gamma)$ increases for all $\Gamma$ so minimum is at $\Gamma_{0}=0$
ii) $T<T^{*}, \Delta F\left(\Gamma\right.$ decreases in $\Gamma$ from $\Gamma=0$ to a minimum at $\pm \Gamma_{0}(T)$ with $\Delta F<0$
iii) $T_{0}<T<T^{*}, \Delta F(T)$ decreases then discontinuously drops to 0 at $T^{*}$

To find $T^{*}$

1) $\Delta F=0$

$$
0=A(T) \Gamma^{2}-B_{0} \Gamma^{4}+C_{0} \Gamma^{6} \text { so, } A(T)=B_{0} \Gamma^{2}-C_{0} \Gamma^{4}
$$


2) $\mathrm{d} \Delta F / \mathrm{d} \Gamma=0$

$$
\begin{aligned}
& 0=2 A(T) \Gamma-4 B_{0} \Gamma^{3}+6 C_{0} \Gamma^{5} \text { so, } A(T)=2 B_{0} \Gamma^{2}-3 C_{0} \Gamma^{4} \\
& \text { or, } B_{0}-C_{0} \Gamma^{2}=2 B_{0}-3 C_{0} \Gamma^{2} \\
& \Gamma^{2}\left(T^{*}\right)=B_{0} / 2 C_{0}
\end{aligned}
$$

3) From 1) $A(T)=B_{0} \Gamma^{2}-C_{0} \Gamma^{4}$

And $A\left(T^{*}\right)=B_{0}\left(B_{0} / 2 C_{0}\right)-C_{0}\left(B_{0} / 2 C_{0}\right)^{2}=B_{0}{ }^{2} / 4 C_{0}$

$$
A\left(T^{*}\right)=A_{0}\left(T^{*}-T_{0}\right) \text { so, } T^{*}=T_{0}+B_{0}^{2} /\left(4 A_{0} C_{0}\right)
$$

Landau invented the terms first and second order transition from this model.


At the Curie transition (second order transition)

$$
\begin{array}{ll} 
& \frac{\partial \Delta_{\mathrm{trs}} G}{\partial \Gamma}=0 \quad \text { and } \quad \frac{\partial^{2} \Delta_{\mathrm{trs}} G}{\partial \Gamma^{2}}>0 \\
\Delta_{\mathrm{trs}} G=\frac{1}{2} b \Gamma^{2}+\frac{1}{3} c \Gamma^{3}+\frac{1}{4} d \Gamma^{4}+\ldots \\
\frac{\partial \Delta_{\mathrm{trs}} G}{\partial \Gamma}=B\left(T-T_{\mathrm{trs}}\right) \Gamma+d \Gamma^{3}=0 \\
\Gamma^{2}=-\frac{B}{d}\left(T-T_{\mathrm{trs}}\right) \quad \text { for } \quad T<T_{\mathrm{trs}} & \Gamma(T) \\
\text { Order parameter is } 1 \text { at } 0 \mathrm{~K} \text { so } \quad \frac{B}{d}=\frac{1}{T_{\mathrm{trs}}} \quad \text { and } \quad \Gamma=\left[\frac{T_{\mathrm{trs}}-T}{T_{\mathrm{trs}}}\right]^{1 / 2}
\end{array}
$$

The transitional Gibbs energy is for $T \leq T_{\text {trs }}$

$$
\begin{aligned}
& \Delta_{\mathrm{trs}} G=-\frac{B^{2}}{2 d}\left(T-T_{\mathrm{trs}}\right)^{2}+\frac{B^{2}}{4 d}\left(T-T_{\mathrm{trs}}\right)^{2}=-\frac{B^{2}}{4 d}\left(T-T_{\mathrm{trs}}\right)^{2} \\
& \Delta_{\mathrm{trs}} S=\frac{B^{2}}{2 d}\left(T-T_{\mathrm{trs}}\right)=-\frac{1}{2} B \cdot \Gamma^{2} \\
& C_{p}^{\mathrm{trs}}=\frac{B^{2}}{2 d} T
\end{aligned}
$$

## Single Component Phase Diagrams

For a single component, an equation of state relates the variables of the system, PVT $\mathrm{PV}=\mathrm{RT}$ or $\mathrm{Z}=1$ Ideal Gas at low p or high T or low $\rho$

$$
Z \equiv \frac{P}{R T \rho}=A+B \rho+C \rho^{2}+\cdots \quad \text { Virial Equation of State }
$$

So, a phase diagram for a single component will involve two free variables, such as P vs T or T versus $\rho$.
Other unusual variables might also be involved such as magnetic field, electric field.
Then a 2D phase diagram would require specification of the fixed free variables.

Z is the Compressibility Factor

B is the second order virial coefficient which reflects binary interactions, $\rho^{2}$
$B$ has units of volume and is related to the excluded volume (will see later with VDW EOS)

## Single Component Phase Diagrams



Isochoric phase diagram
Fill a piston with the material at $p$ and $T$, and observe the pressure as the temperature is varied holding the volume constant

Figure 2.7 The $p, T$ phase diagram of $\mathrm{H}_{2} \mathrm{O}$ (the diagram is not drawn to scale).

For a single component, an equation of state relates the variables of the system, PVT

$$
F+P h=C+2+n
$$

Isothermal


Isochoric


Figure 2.7 The $p, T$ phase diagram of $\mathrm{H}_{2} \mathrm{O}$ (the diagram is not drawn to scale).
http://ecoursesonline.iasri.res.in/mod/page/view.php?id=2406

## Gibbs Phase Rule

$$
\left.\begin{array}{ll} 
& \begin{array}{l}
\text { Number of DOF }=\mathbf{C o m p o n e n t s}-\text { Phases }+\mathbf{2} \\
\text { More components more freedom }
\end{array} \\
\text { More phases more constraints }
\end{array}\right\} \begin{aligned}
& \mathbf{F}=\mathbf{2} \text { area; } \mathbf{F}=\mathbf{1} \text { line } ; \mathbf{F}=\mathbf{0} \text { point on a 2d phase diagram }
\end{aligned}
$$

In Chapter 4 the determination of the number of components in complex systems will be discussed in some detail. In this chapter we shall only consider single-component systems. For a single-component system, such as pure $\mathrm{H}_{2} \mathrm{O}, C=1$ and $F=3$ $-P h$. Thus, a single phase $(P h=1)$ is represented by an area in the $p, T$ diagram and the number of degrees of freedom $F$ is 2 . A line in the phase diagram represents a heterogeneous equilibrium between two coexisting phases $(P h=2)$ and $F=1$, while three phases $(P h=3)$ in equilibrium are located at a point, $F=0$.

Field Induced Transitions

| Type of work | Intensive variable | Extensive variable | Differential work in $\mathrm{d} U$ |
| :--- | :--- | :--- | :--- |
| Mechanical |  |  |  |
| Pressure-volume | $-p$ | $V$ | $-p \mathrm{~d} V$ |
| Elastic | $f$ | $l$ | $f \mathrm{~d} l$ |
| Surface | $\sigma$ | $A_{\mathrm{S}}$ | $\sigma \mathrm{d} A_{\mathrm{S}}$ |
| Electromagnetic |  |  |  |
| Charge transfer | $\Phi_{i}$ | $q_{i}$ | $\Phi_{\mathrm{i}} \mathrm{d} q_{i}$ |
| Electric polarization | $\boldsymbol{E}$ | $\boldsymbol{p}$ | $\boldsymbol{E} \cdot \mathrm{d} \boldsymbol{p}$ |
| Magnetic polarization | $\boldsymbol{B}$ | $\boldsymbol{m}$ | $\boldsymbol{B} \cdot \mathrm{d} \boldsymbol{m}$ |

## Consider constant volume (isochoric) and subject to a magnetic field

-S U V
H A
-p G T

$$
\mathrm{dU}=-\mathrm{pdV}+\mathrm{TdS}+\mathrm{Bdm}=\mathrm{TdS}+\mathrm{Bdm}
$$

$$
\mathrm{dA}=-\mathrm{SdT}-\mathrm{pdV}+\mathrm{Bdm}=-\mathrm{SdT}+\mathrm{Bdm}
$$

Legendre Transformation (isochoric dV=0)

## Assume constant volume, V

Magnetic Field Strength B (intrinsic) Magnetic Moment, m (extrinsic)
(strength of a magnet)
Magnetic moment drops with T
Torque $=\mathbf{m} \times \mathbf{B}$
$\mathrm{dA}=-\mathrm{SdT}+\mathrm{Bdm}$
So, A is naturally broken into functions of T and m
$(\mathrm{dA} / \mathrm{dT})_{\mathrm{m}}=-\mathrm{S}$
$(\mathrm{dA} / \mathrm{dm})_{\mathrm{T}}=\mathrm{B}$
$d A=(d A / d T)_{m} d T+(d A / d m)_{T} d m$
Take the second derivative
$\mathrm{d}^{2} \mathrm{~A} /(\mathrm{dTdm})=\left((\mathrm{d} / \mathrm{dT})(\mathrm{dA} / \mathrm{dm})_{\mathrm{T}}\right)_{\mathrm{m}}=\left((\mathrm{d} / \mathrm{dm})(\mathrm{dA} / \mathrm{dT})_{\mathrm{m}}\right)_{\mathrm{T}}=\mathrm{d}^{2} \mathrm{~A} /(\mathrm{dmdT})$
Using the above expressions and the middle two terms
$(\mathrm{dB} / \mathrm{dT})_{\mathrm{m}, \mathrm{V}}=-(\mathrm{dS} / \mathrm{dm})_{\mathrm{T}, \mathrm{V}}$
This is a Maxwell Relationship, and the process is called a Legendre transformation

Consider constant volume (isochoric) and subject to a magnetic field

$$
\begin{array}{cl}
-\mathrm{S} \text { U V } & \mathrm{dU}=-\mathrm{pdV}+\mathrm{TdS}+\mathrm{Bdm}=\mathrm{TdS}+\mathrm{Bdm} \\
\text { H A } & \mathrm{dA}=-\mathrm{SdT}-\mathrm{pdV}+\mathrm{Bdm}=-\mathrm{SdT}+\mathrm{Bdm} \\
-\mathrm{p} \mathrm{G} \mathrm{~T} &
\end{array}
$$

Assume constant volume, V

## Legendre Transformation

Magnetic Field Strength B
Magnetic Moment, m
(strength of a magnet)
Magnetic moment drops with T Torque $=\mathbf{m} \times \mathbf{B}$

We want to know how the magnetic moment, m , changes with temperature at constant volume and field strength, $\mathrm{B},(\mathrm{dm} / \mathrm{dT})_{\mathrm{B}, \mathrm{v}}$. Intuitively, we know that this decreases.

Define a Helmholtz free energy (HFE) minus the magnetic field energy, A', $\mathrm{A}^{\prime}=\mathrm{A}-\mathrm{Bm}$ and set its derivative to 0 . This is the complete HFE for a magnetic field, (see the Alberty paper section 4, probably need to read the whole paper or just believe it)
$\mathrm{dA}^{\prime}=0=\mathrm{dA}-\mathrm{Bdm}-\mathrm{mdB}=-\mathrm{SdT}+\mathrm{Bdm}-\mathrm{Bdm}-\mathrm{mdB}=-\mathrm{SdT}-\mathrm{mdB}=0$
We can perform a Legendre Transform on this equation yielding:
$(\mathrm{dm} / \mathrm{dT})_{\mathrm{B}, \mathrm{V}}=(\mathrm{dS} / \mathrm{dB})_{\mathrm{T}, \mathrm{V}}$
So, the change in magnetic moment with temperature (which decreases) is equal to the reduction in entropy with magnetic field (as the material orders).
With this extension the four Maxwell relations expand to 27 with the normal parameters and a very large number if you include the different fields in slide 16

Magnetic field strength decreases with temperature

(a)

(b)

The Curie temperature is where magnets lose their permanent magnetic field

$$
(\mathrm{dm} / \mathrm{dT})_{\mathrm{B}, \mathrm{~V}}=(\mathrm{dS} / \mathrm{dB})_{\mathrm{T}, \mathrm{~V}}
$$

The rate of change of magnetic moment in temperature at constant field reflects the isothermal change in entropy with magnetic field. At the Curie Temperature entropy doesn't change with field at constant temperature.

Ising Model

## Gibbs Phase Rule with $\mathbf{n}$ additional components

$$
F+P h=C+2+n
$$

Degrees of freedom, F plus number of phases Ph , equals the number of components, C , plus 2 plus the number of additional components considered, n .


Figure 2.9 The $\boldsymbol{B}-T$ phase diagram of MnP [13] with the magnetic field along the $b$-axis. Three different magnetically ordered phases - ferro, fan and screw - are separated by firstorder phase transitions. The transitions to the disordered paramagnetic state are of second order and given by a dashed line.

## Equations of State for Gasses

Ideal Gas: $\quad \mathrm{pV}=\mathrm{RT} \quad \mathrm{p}=\rho \mathrm{Rt} \quad \mathrm{Z}=1$


Figure 1.3 Ideal gas behavior at five temperatures.
$P \sim 1 / V$


Figure 1.4 P-V-T behavior of water at the same temperatures used in Fig. 1.3. The plot is prepared from the steam tables in Appendix $E$.

## Chemical Potential of an Ideal Gas

```
-S U V
H A
```

-p G T
$G\left(p_{\mathrm{f}}\right)=G\left(p_{\mathrm{i}}\right)+\int_{p_{\mathrm{i}}}^{p_{\mathrm{f}}} V \mathrm{~d} p$

For an ideal gas $\mathrm{V}=\mathrm{RT} / \mathrm{p}$
$\Delta G=R T \ln \left(\mathbf{p}_{\mathbf{f}} / \mathbf{p}_{\mathbf{i}}\right) \quad$ Ideal Gas at constant T, no Enthalpic Interactions
For single component molar $\mathrm{G}=\mu$
$\mu_{0}$ is at $\mathrm{p}=1$ bar
$\mu=\mu_{0}+R T \ln p$


Figure 2.10 Schematic illustration of the pressure dependence of the chemical potential of a real gas showing deviations from ideal gas behaviour at high pressures.

$$
\mu=\mu_{0}+R T \ln p \quad \text { i.g. }
$$

At equilibrium between two phases the chemical potentials are equal and the fugacities of the two phases are also equal.

$$
\begin{gathered}
\mu(p)=\mu^{\mathrm{o}}\left(p^{\mathrm{o}}\right)+R T \ln \left(\frac{f}{p^{\mathrm{o}}}\right)=\mu^{\mathrm{o}}+R T \ln f \\
\text { Real Gas }
\end{gathered}
$$



Figure 2.11 Fugacity of $\mathrm{N}_{2}(\mathrm{~g})$ at 273.15 K as a function of pressure [15].

$$
\mathrm{Z}=1 \quad \mathrm{P}=\mathrm{RT} / \mathrm{V} \quad \text { Ideal Gas Equation of State }
$$

## Van der Waals Equation of State

$$
\left.\begin{array}{rl} 
& P=\frac{R T}{V-b}-\frac{a}{V^{2}} \\
= & \text { Cubic Equation of State } \\
\mathrm{RT} \rho /(1-\mathrm{b} \rho)-\mathrm{a} \rho^{2} & Z=\frac{P V}{R T}
\end{array} \quad \begin{array}{ll}
a=\frac{27}{64} \frac{\left(R T_{c}\right)^{2}}{P_{c}} & b=\frac{R T_{c}}{8 P_{c}}
\end{array} \quad\left(\frac{\partial p}{\partial V}\right)_{T_{c}}=\left(\frac{\partial^{2} p}{\partial V^{2}}\right)_{T_{c}}=0\right)
$$

$Z=1+B \rho+C \rho^{2}+D \rho^{3}+\ldots \quad$ Virial Equation of State of Onnes

$$
B(T)=b-\frac{a}{R T} .
$$

## Peng-Robinson Equation of State (PREOS)

$$
\begin{gathered}
P=\frac{R T \rho}{(1-b \rho)}-\frac{a \rho^{2}}{1+2 b \rho-b^{2} \rho^{2}} \text { or } Z=\frac{1}{(1-b \rho)}-\frac{a}{b R T} \cdot \frac{b \rho}{1+2 b \rho-b^{2} \rho^{2}} \\
Z=1+Z^{r e p}+Z^{a t t}=1+\frac{b \rho}{1-b \rho}-\frac{a}{b R T} \cdot \frac{b \rho}{1+2 b \rho-b^{2} \rho^{2}} \\
Z^{3}-(1-B) Z^{2}+\left(A-3 B^{2}-2 B\right) Z-\left(A B-B^{2}-B^{3}\right)=0 \quad \text { Cubic Equation of State }
\end{gathered}
$$

Solve cubic equations ( 3 roots)

## Single Component Phase Diagrams



Isochoric phase diagram

Figure 2.7 The $p, T$ phase diagram of $\mathrm{H}_{2} \mathrm{O}$ (the diagram is not drawn to scale).

For a single component, an equation of state relates the variables of the system, PVT


At $0.8 * 460.4 \mathrm{~K}=368 \mathrm{~K}$ And 0.64 MPa 2 phases Higher pressure liquid Lower vapor

Figure 7.1 Comparison of the P $\rho$ T behavior of methane (left) and pentane (right) demonstrating the qualitative similarity which led to corresponding states' treatment of fluids. The lines are calculated with the Peng-Robinson equation to be discussed later: The phase envelope is an approximation sketched through the points available in the plots. The smoothed experimental data are from Brown, G.G., Sounders Jr., M., and Smith, R.L., 1932. Ind. Eng. Chem., 24:513. Although not shown, the Peng-Robinson equation is not particularly accurate for modeling liquid densities.


Figure 1.3 Ideal gas behavior at five temperature.


Figure 7.5 Illustration of the prediction of isotherms by the Peng-Robinson equation
of state for $\mathrm{CO}_{2}\left(T_{c}=304.2 \mathrm{~K}\right)$ at $275 \mathrm{~K}, 290 \mathrm{~K}, 300 \mathrm{~K}, 310 \mathrm{~K}, 320 \mathrm{~K}$, and 350 K .
Higher temperatures result in a high pressure for a given volume. The "humps"
are explained in the text. The calculated vapor pressures are 36.42 bar at 275 K
53.2 bar at 290 K , and 67.21 bar at 300 K

$$
\mathrm{F}(\mathrm{Z})=Z^{3}-(1-B) Z^{2}+\left(A-3 B^{2}-2 B\right) Z-\left(A B-B^{2}-B^{3}\right)=0
$$

$$
7.25
$$






Figure 7.6 Comparison of behavior of cubic in $Z$ for the Peng-Robinson equation of state at several conditions. The labels $Z_{\text {new }}$ and $Z_{\text {old }}$ in the upper left are described in the iterative description in Appendix B.

## CALculation of PHAse Diagrams, CALPHAD

H A
-p G T
For metal alloys to construct phase diagrams

Calculate the Gibbs Free Energy
Use a Taylor Series in Temperature
Determine the phase equilibria using the chemical potentials
Calculate the derivatives of the free energy expression

$$
G_{\mathrm{m}}^{\mathrm{o}}(T)-H_{\mathrm{m}}^{\mathrm{SER}}=a+b T+c T \ln (T)+\sum_{n=2}^{i} d_{n} T^{n}
$$

Get $H_{m}{ }^{\text {SER }}$ from $H_{m}{ }^{0}$ for the components

Table 2.1 Thermodynamic properties of AIN at selected temperatures (data are taken from
NIST-JANAF tables [17]). Enthalpy reference temperature $=T=298.15 \mathrm{~K} ; p^{0}=1$ bar.

| $\frac{T}{\mathrm{~K}}$ | $\frac{C_{p, \mathrm{~m}}}{\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}$ | $\frac{S_{\mathrm{m}}^{\mathrm{o}}}{\mathrm{JK}^{-1} \mathrm{~mol}^{-1}}$ | $\frac{\Delta_{298.15}^{T} H_{\mathrm{m}}^{\mathrm{o}}}{\mathrm{~kJ} \mathrm{~mol}^{-1}}$ | $\frac{\Delta_{\mathrm{f}} H_{\mathrm{m}}^{\mathrm{o}}}{\mathrm{~kJ} \mathrm{~mol}^{-1}}$ | $\frac{\Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}}{\mathrm{~kJ} \mathrm{~mol}^{-1}}$ | $\log K_{\mathrm{f}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0. | 0. | -3.871 | -312.980 | -312.980 | INFINITE |
| 100 | 5.678 | 2.164 | -3.711 | -314.756 | -306.283 | 159.986 |
| 200 | 19.332 | 10.267 | -2.463 | -316.764 | -296.990 | 77.566 |
| 298.15 | 30.097 | 20.142 | 0. | -317.984 | -286.995 | 50.280 |
| 300 | 30.254 | 20.329 | 0.056 | -318.000 | -286.803 | 49.937 |
| 400 | 36.692 | 29.987 | 3.428 | -318.594 | -276.301 | 36.081 |
| 500 | 40.799 | 38.647 | 7.317 | -318.808 | -265.697 | 27.757 |
| 600 | 43.538 | 46.341 | 11.541 | -318.811 | -255.072 | 22.206 |
| 700 | 45.434 | 53.201 | 15.994 | -318.727 | -244.455 | 18.241 |
| 800 | 46.791 | 59.361 | 20.608 | -318.648 | -233.850 | 15.269 |
| 900 | 47.792 | 64.932 | 25.339 | -318.647 | -223.252 | 12.957 |
| 1000 | 48.550 | 70.008 | 30.158 | -329.363 | -211.887 | 11.068 |
| 2000 | 51.290 | 104.790 | 80.490 | -328.119 | -94.810 | 2.476 |

$$
\begin{align*}
& H_{\mathrm{m}}^{\mathrm{o}}(T)=a-c T-\sum_{n}(n-1) d_{n} T^{n}  \tag{2.43}\\
& C_{p, \mathrm{~m}}^{\mathrm{o}}(T)=-c-\sum_{n} n(n-1) d_{n} T^{n-1} \tag{2.44}
\end{align*}
$$

$$
G_{\mathrm{m}}^{\mathrm{o}}(T)-H_{\mathrm{m}}^{\mathrm{SER}}(298.15 \mathrm{~K})=a+b T+c T \ln (T)+\sum_{n} d_{n} T^{n}
$$

$$
\text { with } H_{\mathrm{m}}^{\mathrm{SER}}(298.15 \mathrm{~K})=\Delta_{0}^{298.15} H_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{FCC}_{-} \mathrm{Al}\right)=4540 \mathrm{~J} \mathrm{~mol}^{-1}
$$

## FCC_Al

( $298.15<$ T/K $<700$ )
$-7976.15+137.093038 T-24.3671976 T \ln (T)-1.884662 \mathrm{E}^{-3} T^{2}-0.877664 \mathrm{E}^{-6} T^{3}+74092 T^{-1}$
( $700<T / \mathrm{K}<933.473$ )
$-11276.24+223.048446 T-38.5844296 T \ln (T)+18.531982 \mathrm{E}^{-3} T^{2}-5.764227 \mathrm{E}^{-6} T^{3}+74092 T^{-1}$
(933.473 < T/K < 2900)
$-11278.378+188.684153 T-31.748192 T \ln (T)-1.231 \mathrm{E}^{28} T^{-9}$
Liquid relatively to FCC_Al
(298.15 < T/K < 933.473)
$11005.029-11.841867 T+7.934 \mathrm{E}^{-20} T^{7}$
(933.473 < T/K < 2900)
$10482.382-11.253974 T+1.231 \mathrm{E}^{28} T^{-9}$
HCP_Al relative to FCC_Al
( $298.15<T / \mathrm{K}<2900$ )
5481-1.8 T

Figure $2.12 G_{\mathrm{m}}^{\mathrm{o}}-G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{Al} \_\mathrm{FCC}\right)$ of hexagonal closed-packed (HCP) aluminium and aluminium melt relative to that of face-centred cubic aluminium [18].

